
www.manaraa.com

1 | P a g e

DESIGN AND ANALYSIS OF ALGORITHMS

 LAB MANUAL

Year : 2017 - 2018

Course Code : AIT101

Regulations : IARE - R16

Semester : III

Branch : CSE/IT

Prepared by

Dr. K Rajendra Prasad, Professor

 Dr. R Obulakonda Reddy, Professor

 Dr. B. V. Rao, Professor

 Dr. G. Ramu, Professor

 Mr. Ch. Suresh Kumar Raju, Assistant Professor

 Ms. K. Radhika, Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

www.manaraa.com

2 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

1. PROGRAM OUTCOMES:

B.TECH - PROGRAM OUTCOMES (POS)

PO-1 Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering
specialization to the solution of complex engineering problems(Engineering knowledge).

PO-2 Identify, formulate, review research literature, and analyze complex engineering problems reaching

substantiated conclusions using first principles of mathematics, natural sciences, and engineering
sciences (Problem analysis).

PO-3 Design solutions for complex engineering problems and design system components or processes that

meet the specified needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations (Design/development of solutions).

PO-4 Use research-based knowledge and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid conclusions (Conduct

investigations of complex problems).

PO-5 Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools
including prediction and modeling to complex engineering activities with an understanding of the

limitations (Modern tool usage).

PO-6 Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and

cultural issues and the consequent responsibilities relevant to the professional engineering practice

(The engineer and society).

PO-7 Understand the impact of the professional engineering solutions in societal and environmental

contexts, and demonstrate the knowledge of, and need for sustainable development (Environment

and sustainability).

PO-8 Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice (Ethics).

PO-9 Function effectively as an individual, and as a member or leader in diverse teams, and in
multidisciplinary settings (Individual and team work).

PO-10 Communicate effectively on complex engineering activities with the engineering community and

with society at large, such as, being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear instructions

(Communication).

PO-11 Demonstrate knowledge and understanding of the engineering and management principles and apply

these to one’s own work, as a member and leader in a team, to manage projects and in
multidisciplinary environments (Project management and finance).

PO-12 Recognize the need for, and have the preparation and ability to engage in independent and life-long

learning in the broadest context of technological change (Life-long learning).

www.manaraa.com

3 | P a g e

2. PROGRAM SPECIFIC OUTCOMES

PROGRAM SPECIFIC OUTCOMES (PSO's)

PSO-1 Professional Skills: The ability to understand, analyze and develop computer programs in the areas

related to algorithms, system software, multimedia, web design, big data analytics, and networking
for efficient design of computer-based systems of varying complexity.

PSO-2 Problem-Solving Skills: The ability to apply standard practices and strategies in software project

development using open-ended programming environments to deliver a quality product for business

success.

PSO-3 Successful Career and Entrepreneurship: The ability to employ modern computer languages,
environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for

higher studies.

www.manaraa.com

4 | P a g e

3. ATTAINMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

S.No Experiment

Program

Outcomes

Attained

Program

Specific

Outcomes

Attained

WEEK-l

QUICK SORT

PO-2,PO-3

PSO-1

Sort a given set of elements using the quick sort method and determine

the time required to sort the elements. Repeat the experiment for
different values of n, the number of elements in the 1st to be sorted and

plot a graph of the time taken versus n. The elements can be read from

a file or can be generated using the random number generator.

WEEK-2

MERGE SORT

 PO-2,PO-3

PSO-1

Implement merge sort algorithm to sort a given set of elements and

determine the time required to sort the elements. Repeat the

experiment for different values of n, the number of elements in the list
to be sorted and plot a graph of the time taken versus n. The elements

can be read from a file or can be generated using the random number

generator.

WEEK-3

WARSHALL’S ALGORITHM

 PO-2

a. Obtain the Topological ordering of vertices in a given digraph.

b. Compute the transitive closure of a given directed graph using

Warshall's algorithm.

WEEK-4

KNAPSACK PROBLEM

PO-3

PSO-1 Implement 0/1 Knapsack problem using Dynamic Programming.

WEEK-5

SHORTEST PATHS ALGORITHM

PO-3

PSO-1

From a given vertex in a weighted connected graph, find shortest paths
to other vertices using Dijkstra’s algorithm.

www.manaraa.com

5 | P a g e

WEEK-6

MINIMUM COST SPANNING TREE

PO-3

PSO-1

Find Minimum Cost Spanning Tree of a given undirected graph using

Kruskal’s algorithm.

WEEK-7

TREE TRAVESRSALS

PO-2,PO-3

Perform various tree traversal algorithms for a given tree.

WEEK-8

GRAPH TRAVERSALS

 PO-2,PO-3

a. Print all the nodes reachable from a given starting node in a
digraph using BFS method.

www.manaraa.com

6 | P a g e

 b. Check whether a given graph is connected or not using DFS

method.

WEEK-9

SUM OF SUB SETS PROBLEM

PO-3

Find a subset of a given set S = {sl, s2,....., sn} of n positive integers

whose sum is equal to a given positive integer d. For example, if S=
{1, 2, 5, 6, 8} and d = 9 there are two solutions {1, 2, 6} and {1,8}.A

suitable message is to be displayed if the given problem instance

doesn't have a solution.

WEEK-l0

TRAVELLING SALES PERSON PROBLEM

PO-3,PO-12

PSO-1

Implement any scheme to find the optimal solution for the Traveling

Sales Person problem and then solve the same problem instance using
any approximation algorithm and determine the error in the

approximation.

WEEK-l1

MINIMUM COST SPANNING TREE

PO-3

PSO-1

Find Minimum Cost Spanning Tree of a given undirected graph using

Prim’s algorithm.

www.manaraa.com

7 | P a g e

WEEK-l2

ALL PAIRS SHORTEST PATHS

PO-3

PSO-1

Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.

WEEK-l3

N QUEENS PROBLEM

PO-3

PSO-1
Implement N Queen's problem using Back Tracking.

www.manaraa.com

8 | P a g e

4. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM

OUTCOMES:

Course

Objectives

Program Outcomes
Program Specific

Outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9
PO

10

PO

11

PO

12

PSO1 PSO2 PSO3

I √ √ √ √

II √ √ √ √

www.manaraa.com

9 | P a g e

5. SYLLABUS:

DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY

III Semester: CSE / IT

Course Code Category Hours / Week Credits Maximum Marks

AIT101 Core
L T P C CIA SEE Total

- - 3 2 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 39 Total Classes: 39

OBJECTIVES:

The course should enable the students to:
Learn how to analyze a problem and design the solution for the problem.

I. Design and implement efficient algorithms for a specified application.

II. Strengthen the ability to identify and apply the suitable algorithm for the given real world problem.

LIST OF EXPERIMENTS

WEEK-1 QUICK SORT

Sort a given set of elements using the quick sort method and determine the time required to sort the

elements. Repeat the experiment for different values of n, the number of elements in the 1st to be sorted

and plot a graph of the time taken versus n. The elements can be read from a file or can be generated

using the random number generator.

WEEK-2 MERGE SORT

Implement merge sort algorithm to sort a given set of elements and determine the time required to sort the

elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted

and plot a graph of the time taken versus n. The elements can be read from a file or can be generated
using the random number generator.

WEEK-3 WARSHALL’S ALGORITHM

c. Obtain the Topological ordering of vertices in a given digraph.

d. Compute the transitive closure of a given directed graph using Warshall's algorithm.

www.manaraa.com

10 | P a g e

WEEK-4 KNAPSACK PROBLEM

Implement 0/1 Knapsack problem using Dynamic Programming.

WEEK-5 SHORTEST PATHS ALGORITHM

From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra’s

algorithm.

WEEK-6 MINIMUM COST SPANNING TREE

Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal’s algorithm.

WEEK-7 TREE TRAVESRSALS

Perform various tree traversal algorithms for a given tree.

WEEK-8 GRAPH TRAVERSALS

www.manaraa.com

11 | P a g e

a. Print all the nodes reachable from a given starting node in a digraph using BFS method.

 b. Check whether a given graph is connected or not using DFS method.

WEEK-9 SUM OF SUB SETS PROBLEM

Find a subset of a given set S = {sl, s2,.....,sn} of n positive integers whose sum is equal to a given

positive integer d. For example, if S= {1, 2, 5, 6, 8} and d = 9 there are two solutions {1, 2, 6} and

{1,8}.A suitable message is to be displayed if the given problem instance doesn't have a solution.

WEEK-10 TRAVELLING SALES PERSON PROBLEM

Implement any scheme to find the optimal solution for the Traveling Sales Person problem and then

solve the same problem instance using any approximation algorithm and determine the error in the

approximation.

WEEK-11 MINIMUM COST SPANNING TREE

 Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm.

www.manaraa.com

12 | P a g e

WEEK-12 ALL PAIRS SHORTEST PATHS

Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.

WEEK-13 N QUEENS PROBLEM

Implement N Queen's problem using Back Tracking.

Reference Books:

1. Levitin A, “Introduction to the Design And Analysis of Algorithms”, Pearson Education, 2008.

2. Goodrich M.T.,R Tomassia, “Algorithm Design foundations Analysis and Internet Examples”, John

Wileyn and Sons, 2006.

3. Base Sara, Allen Van Gelder ,“ Computer Algorithms Introduction to Design and Analysis”,
Pearson, 3rd Edition, 1999.

Web References:

1. http://www.personal.kent.edu/~rmuhamma/Algorithms/algorithm.html

2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms

3. http://www.facweb.iitkgp.ernet.in/~sourav/daa.html

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS:

HARDWARE:

Desktop Computer Systems: 36 nos

SOFTWARE:

Application Software: C Programming Compiler

www.manaraa.com

13 | P a g e

6. INDEX:

Sl. No Experiment Page No

1 QUICK SORT 14

2 MERGE SORT 17

3 WARSHALL’S ALGORITHM 20

4 KNAPSACK PROBLEM 24

5 SHORTEST PATHS ALGORITHM 26

6 MINIMUM COST SPANNING TREE 29

7 TREE TRAVESRSALS 32

8 GRAPH TRAVERSALS 38

9 SUM OF SUB SETS PROBLEM 42

10 TRAVELLING SALES PERSON PROBLEM 45

11 MINIMUM COST SPANNING TREE 48

12 ALL PAIRS SHORTEST PATHS 51

13 N QUEENS PROBLEM 55

www.manaraa.com

14 | P a g e

WEEK-1

QUICK SORT

1.1 OBJECTIVE:

Sort a given set of elements using the Quick sort method and determine the time required to sort

the elements. Repeat the experiment for different values of n, the number of elements in the list to

be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can

be generated using the random number generator.

1.2 RESOURCES:

 Dev C++

1.3 PROGRAM LOGIC:

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given
array around the picked pivot.

There are many different versions of QuickSort that pick pivot in different ways.
1. Always pick first element as pivot.

2. Always pick last element as pivot (implemented below)

3. Pick a random element as pivot.
4. Pick median as pivot.

The key process in QuickSort is partition. Target of partitions is, given an array and an element x

of array as pivot, put x at its correct position in sorted array and put all smaller elements (smaller
than x) before x, and put all greater elements (greater than x) after x.

1.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.
2. Compile: Alt + F9

3. Execute: Ctrl + F10

1.5 SOURCE CODE:

 include <stdio.h>

 include <time.h>
voidExch(int *p, int *q){

int temp = *p;

*p = *q;

*q = temp;

}
voidQuickSort(int a[], int low, int high){

int i, j, key, k;

if(low>=high)
return;

key=low;

www.manaraa.com

15 | P a g e

i=low+1;
j=high;

while(i<=j){

while (a[i] <= a[key])

 i=i+1;

while (a[j] > a[key])
j=j -1;

if(i<j)

Exch(&a[i], &a[j]);
}
Exch(&a[j], &a[key]);

QuickSort(a, low, j-1);
QuickSort(a, j+1, high);

}

void main(){

int n, a[1000],k;
clock_tst,et; double ts; clrscr();

printf("\n Enter How many Numbers: ");

scanf("%d", &n);
printf("\nThe Random Numbers are:\n");

for(k=1; k<=n; k++){
a[k]=rand();

printf("%d\t",a[k]);
}
st=clock();

QuickSort(a, 1, n);
et=clock();
ts=(double)(et-st)/CLOCKS _PER_SEC;

printf("\nSorted Numbers are: \n ");

for(k=1; k<=n; k++)
printf("%d\t", a[k]);

printf("\nThe time taken is %e",ts);
}

1.6 INPUT/ OUTPUT

www.manaraa.com

16 | P a g e

1.7 LAB VIVA QUESTIONS:

1. What is the average case time complexity of quick sort.

2. Explain is divide and conquer.

3. Define in place sorting algorithm.
4. List different ways of selecting pivot element.

www.manaraa.com

17 | P a g e

WEEK-2

MERGE SORT

1.1 OBJECTIVE:

Implement merge sort algorithm to sort a given set of elements and determine the time required to

sort the elements. Repeat the experiment for different values of n, the number of elements in the list
to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can

be generated using the random number generator.

1.2 RESOURCES:

 Dev C++

1.3 PROGRAM LOGIC:

Merge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the

two halves and then merges the two sorted halves.
The merge() function is used for merging two halves. The merge(a, low, mid, high) is key process

that assumes that a[low..mid] and a[mid+1..high] are sorted and merges the two sorted sub-arrays into

one.

1.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

1.5 SOURCE CODE:

#include <stdio.h>
#include<time.h>

int b[50000];

void Merge(int a[], int low, int mid, int high){

 int i, j, k;
 i=low; j=mid+1; k=low;

 while (i<=mid && j<=high) {

 if(a[i] <= a[j])
 b[k++] = a[i++] ;

 else

 b[k++] = a[j++] ;
 }

 while (i<=mid)

 b[k++] = a[i++] ;

 while (j<=high)
 b[k++] = a[j++] ;

 for(k=low; k<=high; k++)

 a[k] = b[k];

}

www.manaraa.com

18 | P a g e

voidMergeSort(int a[], int low, int high){

 int mid;

 if(low >= high)

 return;
 mid = (low+high)/2 ;

 MergeSort(a, low, mid);

 MergeSort(a, mid+1, high);
 Merge(a, low, mid, high);

}

void main(){
 int n, a[50000],k;

 clock_tst,et;

 doublets;

 printf("\n Enter How many Numbers:");
scanf("%d", &n);

 printf("\nThe Random Numbers are:\n");

 for(k=1; k<=n; k++) {
 a[k]=rand();

 printf("%d\t", a[k]);

 }
 st=clock();

 MergeSort(a, 1, n);

 et=clock();

 ts=(double)(et-st)/CLOCKS_PER_SEC;
 printf("\n Sorted Numbers are : \n ");

 for(k=1; k<=n; k++)

 printf("%d\t", a[k]);
 printf("\nThe time taken is %e",ts);

}

1.6 INPUT/ OUTPUT

www.manaraa.com

19 | P a g e

2.7LAB VIVA QUESTIONS:

1. What is the running time of merge sort?

2. What technique is used to sort elements in merge sort?

3. Is merge sort in place sorting algorithm?

4. Define stable sort algorithm.

www.manaraa.com

20 | P a g e

WEEK-3

WARSHALL’S ALGORITHM

3.1 OBJECTIVE:

1. Obtain the Topological ordering of vertices in a given digraph.

2. Compute the transitive closure of a given directed graph using Warshall's algorithm.

3.2 RESOURCES:

 Dev C++

3.3 PROGRAM LOGIC:

Topological ordering
In topological sorting, a temporary stack is used with the name “s”. The node number is not printed

immediately; first iteratively call topological sorting for all its adjacent vertices, then push adjacent

vertex to stack. Finally, print contents of stack. Note that a vertex is pushed to stack only when all of
its adjacent vertices (and their adjacent vertices and so on) are already in stack.

Transitive closure
Given a directed graph, find out if a vertex j is reachable from another vertex i for all vertex pairs (i, j)
in the given graph. Here reachable mean that there is a path from vertex i to j. The reach-ability

matrix is called transitive closure of a graph.

3.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9
3. Execute: Ctrl + F10

3.5 SOURCE CODE:

// Topological ordering

#include<stdio.h>

int a[10][10],n,indegre[10];

voidfind_indegre (){

intj,i,sum;

for(j=0;j<n;j++) {

www.manaraa.com

21 | P a g e

sum=0;
for(i=0;i<n;i++)

sum+=a[i][j];
indegre[j]=sum;

}
}

void topology(){
inti,u,v,t[10],s[10],top=-1,k=0;

find_indegre();
for(i=0;i<n;i++){

if(indegre[i]==0)

s[++top]=i;
}

while(top!=-1) {

u=s[top--];

t[k++]=u; //top element of stack is stored in temporary array

for(v=0;v<n;v++){

if(a[u][v]==1){

indegre[v]--;

if(indegre[v]==0)

s[++top]=v; //Pushing adjacent vertex to stack
}

}
}
printf ("The topological Sequence is:\n");

for(i=0;i<n;i++)
printf ("%d ",t[i]);

}

void main(){
inti,j;

printf("Enter number of jobs:");

scanf("%d",&n);

printf("\nEnter the adjacency matrix:\n");
for(i=0;i<n;i++){

for(j=0;j<n;j++)

scanf("%d",&a[i][j]);
}

topology();

}

//Transitive closure of a graph using Warshall's algorithm

#include <stdio.h>

intn,a[10][10],p[10][10];
void path(){

inti,j,k;

for(i=0;i<n;i++)
for(j=0;j<n;j++)

p[i][j]=a[i][j];

for(k=0;k<n;k++)

for(i=0;i<n;i++)

www.manaraa.com

22 | P a g e

for(j=0;j<n;j++)
if(p[i][k]==1&&p[k][j]==1)

 p[i][j]=1;

}

void main(){
inti,j;

printf("Enter the number of nodes:");

scanf("%d",&n);
printf("\nEnter the adjacency matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<n;j++)
scanf("%d",&a[i][j]);

path();

printf("\nThe path matrix is shown below\n");

for(i=0;i<n;i++){
for(j=0;j<n;j++)

printf("%d ",p[i][j]);

printf("\n");
}

}

3.6 INPUT/ OUTPUT

Topological ordering

www.manaraa.com

23 | P a g e

Transitive closure of a graph using Warshall's algorithm

3.6 LAB VIVA QUESTIONS:

1. Define transitive closure.

2. Define topological sequence.

3. What is the time complexity of Warshall'salgorithm?

www.manaraa.com

24 | P a g e

WEEK-4

KNAPSACK PROBLEM

4.1 OBJECTIVE:

Implement 0/1 Knapsack problem using Dynamic Programming.

4.2 RESOURCES:

 Dev C++

4.3 PROGRAM LOGIC:

Given some items, pack the knapsack to get the maximum total profit. Each item has some
Weight and some profit. Total weight that we can carry is no more than some fixed number W.

4.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

4.5 SOURCE CODE:

#include<stdio.h>

int w[10],p[10],v[10][10],n,i,j,cap,x[10]={0};
int max(inti,int j){

 return ((i>j)?i:j);

}

int knap(inti,int j){
 int value;

 if(v[i][j]<0){

 if(j<w[i])
 value=knap(i-1,j);

else

value=max(knap(i-1,j),p[i]+knap(i-1,j-w[i]));
 v[i][j]=value;

 }

 return(v[i][j]);

}
int main(){

 intprofit,count=0;

 printf("\nEnter the number of objects ");
 scanf("%d",&n);

 printf("Enter the profit and weights of the elements \n ");

 for(i=1;i<=n;i++){
 printf("\nEnter profit and weight For object no %d :",i);

 scanf("%d%d",&p[i],&w[i]);

 }

 printf("\nEnter the capacity ");

www.manaraa.com

25 | P a g e

 scanf("%d",&cap);
 for(i=0;i<=n;i++)

for(j=0;j<=cap;j++)

 if((i==0)||(j==0))

 v[i][j]=0;
 else

 v[i][j]=-1;

profit=knap(n,cap);
 i=n;

 j=cap;

 while(j!=0&&i!=0){
 if(v[i][j]!=v[i-1][j]){

 x[i]=1;

 j=j-w[i];

i--;
 }

 else

 i--;
 }

 printf("object included are \n ");

 printf("Sl.no\tweight\tprofit\n");
 for(i=1;i<=n;i++)

 if(x[i])

 printf("%d\t%d\t%d\n",++count,w[i],p[i]);

printf("Total profit = %d\n",profit);
}

4.6 INPUT/ OUTPUT

4.7 LAB VIVA QUESTIONS:

1. Define knapsack problem.

2. Define principle of optimality.
3. What is the optimal solution for knapsack problem?

4. What is the time complexity of knapsack problem?

www.manaraa.com

26 | P a g e

WEEK-5

SHORTEST PATHS ALGORITHM

5.1 OBJECTIVE:

From a given vertex in a weighted connected graph, find shortest paths to other vertices using

Dijkstra’s algorithm.

5.2 RESOURCES:

 Dev C++

5.3 PROGRAM LOGIC:

1) Create a set S that keeps track of vertices included in shortest path tree, i.e., whose minimum
distance from source is calculated and finalized. Initially, this set is empty.

2) Assign a distance value to all vertices in the input graph. Initialize all distance values as

INFINITE.Assign distance value as 0 for the source vertex so that it is picked first.
3) While S doesn’t include all vertices

a) Pick a vertex u which is not there in S and has minimum distance value.

b)Include u to S.
c) Update distance value of all adjacent vertices of u.

To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if

sum of distance value of u (from source) and weight of edge u-v, is less than the distance value of v,
then update the distance value of v.

5.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

5.5 SOURCE CODE:

#include<stdio.h>

#define infinity 999

void dij(int n, int v,int cost[20][20], int dist[]){

www.manaraa.com

27 | P a g e

 int i,u,count,w,flag[20],min;
 for(i=1;i<=n;i++)

 flag[i]=0, dist[i]=cost[v][i];

 count=2;

 while(count<=n){
 min=99;

 for(w=1;w<=n;w++)

 if(dist[w]<min && !flag[w]) {
 min=dist[w];

 u=w;

 }
 flag[u]=1;

 count++;

 for(w=1;w<=n;w++)

 if((dist[u]+cost[u][w]<dist[w]) && !flag[w])
 dist[w]=dist[u]+cost[u][w];

 }

}
int main(){

 int n,v,i,j,cost[20][20],dist[20];

 printf("enter the number of nodes:");
 scanf("%d",&n);

 printf("\n enter the cost matrix:\n");

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j++){
 scanf("%d",&cost[i][j]);

 if(cost[i][j] == 0)

 cost[i][j]=infinity;
 }

printf("\n enter the source matrix:");

 scanf("%d",&v);

 dij(n,v,cost,dist);
 printf("\n shortest path : \n");

 for(i=1;i<=n;i++)

 if(i!=v)
 printf("%d->%d,cost=%d\n",v,i,dist[i]);

}

www.manaraa.com

28 | P a g e

5.6 INPUT/ OUTPUT

5.7 LAB VIVA QUESTIONS:

1. What is the time complexity of Dijkstra’s algorithm?

2. Define cost matrix.

3. Define directed graph.
4. Define connected graph.

www.manaraa.com

29 | P a g e

WEEK-6

MINIMUM COST SPANNING TREE

6.1 OBJECTIVE:

Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal’s algorithm.

6.2 RESOURCES:

 Dev C++

6.3 PROGRAM LOGIC:

1. Sort all the edges in non-decreasing order of their weight.
2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is

not formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

6.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

6.5 SOURCE CODE:

#include<stdio.h>
#include<stdlib.h>

inti,j,k,a,b,u,v,n,ne=1;

intmin,mincost=0,cost[9][9],parent[9];

int find(int);
intuni(int,int);

void main() {

 printf("\n Implementation of Kruskal's algorithm\n\n");
 printf("\nEnter the no. of vertices\n");

 scanf("%d",&n);

 printf("\nEnter the cost adjacency matrix\n");
 for(i=1;i<=n;i++){

 for(j=1;j<=n;j++) {

 scanf("%d",&cost[i][j]);

www.manaraa.com

30 | P a g e

 if(cost[i][j]==0)
 cost[i][j]=999;

 }

 }

 printf("\nThe edges of Minimum Cost Spanning Tree are\n\n");
 while(ne<n){

 for(i=1,min=999;i<=n;i++) {

 for(j=1;j<=n;j++){
 if(cost[i][j]<min){

 min=cost[i][j];

 a=u=i;
 b=v=j;

 }

 }

 }
 u=find(u);

 v=find(v);

 if(uni(u,v)){
 printf("\n%d edge (%d,%d) =%d\n",ne++,a,b,min);

 mincost +=min;

 }
 cost[a][b]=cost[b][a]=999;

 }

printf("\n\tMinimum cost = %d\n",mincost);

}
int find(int i){

 while(parent[i])

 i=parent[i];
 return i;

}

intuni(inti,int j){

 if(i!=j) {
 parent[j]=i;

 return 1;

 }
return 0;

}

www.manaraa.com

31 | P a g e

6.6 INPUT/ OUTPUT

6.7 LAB VIVA QUESTIONS:

1. What is the time complexity of Kruskal’s algorithm.
2. Define spanning tree.

3. Define minimum cost spanning tree.

www.manaraa.com

32 | P a g e

WEEK-7

TREE TRAVESRSALS

7.1 OBJECTIVE:

Perform various tree traversal algorithms for a given tree.

7.2 RESOURCES:

 Dev C++

7.3 PROGRAM LOGIC:

Traversal is a process to visit all the nodes of a tree and may print their values too.

Inorder(tree)

 1. Traverse the left subtree, i.e., call Inorder(left-subtree)

 2. Visit the root.

 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Postorder(tree)

 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

 3. Visit the root.

Preorder(tree)

 1. Visit the root.

 2. Traverse the left subtree, i.e., call Preorder(left-subtree)

 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

7.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

www.manaraa.com

33 | P a g e

7.5 SOURCE CODE:

#include<stdio.h>

#include<stdlib.h>
typedefstructtreeNode{

 int data;

 structtreeNode *left;
 structtreeNode *right;

}treeNode;

treeNode* FindMin(treeNode *node){

 if(node==NULL){/* There is no element in the tree */

 return NULL;

 }
 if(node->left) /* Go to the left sub tree to find the min element */

 returnFindMin(node->left);

 else
 return node;

}

treeNode * insert(treeNode *node,int data){

 if(node==NULL){

 treeNode *temp;

 temp = (treeNode *)malloc(sizeof(treeNode));
 temp -> data = data;

 temp -> left = temp -> right = NULL;

 return temp;
 }

 if(data >(node->data)) {

 node->right = insert(node->right,data);

 }
 else if(data < (node->data)){

 node->left = insert(node->left,data);

 }
 /* Else there is nothing to do as the data is already in the tree. */

 return node;

}
treeNode * deletion(treeNode *node, int data){

 treeNode *temp;

 if(node==NULL){

 printf("Element Not Found");
 }

 else if(data < node->data){

 node->left = deletion(node->left, data);
 }

 else if(data > node->data){

 node->right = deletion(node->right, data);
 }

 else{

www.manaraa.com

34 | P a g e

/* Now We can delete this node and replace with either minimum elementin the right sub
tree or maximum element in the left subtree */

 if(node->right && node->left){

 /* Here we will replace with minimum element in the right sub tree */

 temp = FindMin(node->right);
 node -> data = temp->data;

 /* As we replaced it with some other node, we have to delete that node */

 node -> right = deletion(node->right,temp->data);
 }

 else{

 /* If there is only one or zero children then we can directlyremove it
from the tree and connect its parent to its child */

 temp = node;

 if(node->left == NULL)

 node = node->right;
 else if(node->right == NULL)

 node = node->left;

 free(temp); /* temp is longer required */
 }

 }

 return node;
}

treeNode * search(treeNode *node, int data){

 if(node==NULL){/* Element is not found */
 return NULL;

 }

 if(data > node->data){ /* Search in the right sub tree. */
 return search(node->right,data);

 }

 else if(data < node->data){ /* Search in the left sub tree. */

 return search(node->left,data);
 }

 else{ /* Element Found */

 return node;
 }

}

voidinorder(treeNode *node){

 if(node!=NULL) {

 inorder(node->left);

 printf("%d ",node->data);
 inorder(node->right);

 }

 else return;
}

void preorder(treeNode *node){
 if(node!=NULL){

 printf("%d ",node->data);

 preorder(node->left);

www.manaraa.com

35 | P a g e

 preorder(node->right);
 }

 else return;

}

Voidpostorder(treeNode *node){

 if(node!=NULL){

 postorder(node->left);
 postorder(node->right);

 printf("%d ",node->data);

 }
 else return;

}

void main(){
treeNode *t,*root = NULL;

intch, elt;

do {
 printf("\n ### Binary Search Tree Operations ###");

 printf("\n Press 1-Creation of BST");

 printf("\n 2-deleting ");
 printf("\n 3-searching ");

 printf("\n 4-Traverse in Inorder");

 printf("\n 5-Traverse in Preorder");

 printf("\n 6-Traverse in Postorder");
 printf("\n 7-Exit\n");

 printf("\n enter yor choice ");

 scanf("%d", &ch);
 switch (ch) {

 case 1:

 printf("enter element to be inserted");

 scanf("%d", &elt);
 root = insert(root, elt);

 break;

 case 2:

printf("enter element to be deleted");

 scanf("%d",&elt);
 deletion(root,elt);

 break;

 case 3:

printf("enter element to be search");
 scanf("%d",&elt);

 t=search(root,elt);

 if(t==NULL)
 printf("element NOT found");

 break;

 case 4:
 printf("\n BST Traversal in INORDER \n");

 inorder(root);

 break;

www.manaraa.com

36 | P a g e

 case 5:
 printf("\n BST Traversal in PREORDER \n");

 preorder(root);

 break;

 case 6:
 printf("\n BST Traversal in POSTORDER \n");

 postorder(root);

 break;
 case 7:

 printf("\n\n Terminating \n\n");

 break;
 default:

 printf("\n\nInvalid Option !!! Try Again !! \n\n");

 break;

 }
 } while (ch!= 7);

}

7.6 INPUT/ OUTPUT

www.manaraa.com

37 | P a g e

7.7 LAB VIVA QUESTIONS:

1. Define binary tree.

2. List different tree traversals.

3. Explain inorder travels with example.
4. Explain preorder travels with example.

5. Explain postorder travels with example.

www.manaraa.com

38 | P a g e

WEEK-8

GRAPH TRAVERSALS

8.1 OBJECTIVE:

1. Print all the nodes reachable from a given starting node in a digraph using BFS method.

2. Check whether a given graph is connected or not using DFS method.

8.2 RESOURCES:

 Dev C++

8.3 PROGRAM LOGIC:

 Breadth first traversal

 Breadth First Search (BFS) algorithm traverses a graph in a breadth ward motion and uses a

queue to remember to get the next vertex to start a search.

1. Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue.
2. If no adjacent vertex is found, remove the first vertex from the queue.

3. Repeat Rule 1 and Rule 2 until the queue is empty.

www.manaraa.com

39 | P a g e

 Depth first traversal

Depth First Search (DFS) algorithm traverses a graph in a depth ward motion and uses a stack to

remember to get the next vertex to start a search.

1. Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

2. If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices
from the stack, which do not have adjacent vertices.)

3. Repeat Rule 1 and Rule 2 until the stack is empty.

8.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

8.5 SOURCE CODE:

//Breadth first traversal

#include<stdio.h>

#include<conio.h>
int a[20][20],q[20],visited[20],n,i,j,f=-1,r=0;

voidbfs(int v){

q[++r]=v;

visited[v]=1;
while(f<=r) {

 for(i=1;i<=n;i++)

 if(a[v][i] && !visited[i]){
 visited[i]=1;

 q[++r]=i;

 }
 f++;

 v=q[f];

}

}
void main(){

int v;

printf("\n Enter the number of vertices:");
scanf("%d",&n);

for(i=1;i<=n;i++){

 q[i]=0;

visited[i]=0;
}

printf("\n Enter graph data in matrix form:\n");

for(i=1;i<=n;i++)
for(j=1;j<=n;j++)

scanf("%d",&a[i][j]);

printf("\n Enter the starting vertex:");
scanf("%d",&v);

bfs(v);

www.manaraa.com

40 | P a g e

printf("\n The node which are reachable are:\n");
for(i=1;i<=n;i++)

if(visited[i])

printf("%d\t",q[i]);

else
printf("\n Bfs is not possible");

}

//Checking whether a given graph is connected or not using DFS method

#include<stdio.h>
#include<conio.h>

int a[20][20],reach[20],n;

void dfs(int v){

int i; reach[v]=1;
for(i=1;i<=n;i++)

 if(a[v][i] && !reach[i]) {

 printf("\n %d->%d",v,i);
 dfs(i);

 }

}
void main(){

 int i,j,count=0;

 printf("\n Enter number of vertices:");

 scanf("%d",&n);
 for(i=1;i<=n;i++){

 reach[i]=0;

 for(j=1;j<=n;j++)
 a[i][j]=0;

 }

 printf("\n Enter the adjacency matrix:\n");

 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)

 scanf("%d",&a[i][j]);

 dfs(1);
 printf("\n");

 for(i=1;i<=n;i++){

 if(reach[i])
 count++;

 }

 if(count==n)

 printf("\n Graph is connected");
 else

 printf("\n Graph is not connected");

}

www.manaraa.com

41 | P a g e

8.6 INPUT/ OUTPUT

Breadth first traversal

Checking whether a given graph is connected or not using DFS method

8.7 LAB VIVA QUESTIONS:

1. Define graph, connected graph.
2. List the different graph traversals.

3. Explain DFS traversal.

4. Explain BFS traversal.
5. What are the time complexities of BFS and DFS algorithms?

www.manaraa.com

42 | P a g e

WEEK-9

SUM OF SUB SETS PROBLEM

9.1 OBJECTIVE:

Find a subset of a given set S = {sl, s2.....sn} of n positive integers whose sum is equal to a given

positive integer d. For example, if S= {1, 2, 5, 6, 8} and d = 9 there are two solutions {1, 2, 6} and {1,

8}.A suitable message is to be displayed if the given problem instance doesn't have a solution.

9.2 RESOURCES:

 Dev C++

9.3 PROGRAM LOGIC:

Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set

with sum equal to given sum.

9.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.
2. Compile: Alt + F9

3. Execute: Ctrl + F10

9.5 SOURCE CODE:

#include<stdio.h>

#define TRUE 1
#define FALSE 0

int inc[50],w[50],sum,n;

voidsumset(int ,int ,int);
int promising(inti,intwt,int total) {

 return (((wt+total)>=sum)&&((wt==sum)||(wt+w[i+1]<=sum)));

}

void main() {
 inti,j,n,temp,total=0;

 printf("\n Enter how many numbers: ");

 scanf("%d",&n);
 printf("\n Enter %d numbers : ",n);

 for (i=0;i<n;i++) {

 scanf("%d",&w[i]);

 total+=w[i];
 }

 printf("\n Input the sum value to create sub set: ");

 scanf("%d",&sum);
 for (i=0;i<=n;i++)

 for (j=0;j<n-1;j++)

www.manaraa.com

43 | P a g e

 if(w[j]>w[j+1]) {
 temp=w[j];

 w[j]=w[j+1];

 w[j+1]=temp;

 }
 printf("\n The given %d numbers in ascending order: ",n);

 for (i=0;i<n;i++)

 printf("%3d",w[i]);
 if((total<sum))

 printf("\n Subset construction is not possible");

 else{
 for (i=0;i<n;i++)

 inc[i]=0;

 printf("\n The solution using backtracking is:\n");

 sumset(-1,0,total);
 }

}
voidsumset(inti,intwt,int total){

 int j;

 if(promising(i,wt,total)) {
 if(wt==sum){

 printf("\n{");

 for (j=0;j<=i;j++)

 if(inc[j])
 printf("%3d",w[j]);

 printf(" }\n");

 } else {
 inc[i+1]=TRUE;

 sumset(i+1,wt+w[i+1],total-w[i+1]);

 inc[i+1]=FALSE;

 sumset(i+1,wt,total-w[i+1]);
 }

 }

 }

www.manaraa.com

44 | P a g e

9.6 INPUT/ OUTPUT

9.7 LAB VIVA QUESTIONS:

1. Define is Back-Tracking.

2. Explain Sum of subset problem.
3. What is time complexity of sum of subset problem?

www.manaraa.com

45 | P a g e

WEEK-10

TRAVELLING SALES PERSON PROBLEM

10.1 OBJECTIVE:

Implement any scheme to find the optimal solution for the Traveling Sales Person problem and then

solve the same problem instance using any approximation algorithm and determine the error in the

approximation

10.2 RESOURCES:

 Dev C++

10.3 PROGRAM LOGIC:

1. Check for the disconnection between the current city and the next city

2. Check whether the travelling sales person has visited all the cities

3. Find the next city to be visited

4. Find the solution and terminate

10.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

10.5 SOURCE CODE:

#include<stdio.h>
ints,c[100][100],ver;

float optimum=999,sum;

/* function to swap array elements */
void swap(int v[], int i, int j) {

int t;

t = v[i];

v[i] = v[j];
v[j] = t;

}

/* recursive function to generate permutations */
voidbrute_force(int v[], int n, int i) {

 // this function generates the permutations of the array from element i to element n-1

int j,sum1,k;
//if we are at the end of the array, we have one permutation

 if (i == n) {

if(v[0]==s) {

 for (j=0; j<n; j++)
 printf ("%d ", v[j]);

 sum1=0;

www.manaraa.com

46 | P a g e

for(k=0;k<n-1;k++) {
 sum1=sum1+c[v[k]][v[k+1]];

 }

sum1=sum1+c[v[n-1]][s];

 printf("sum = %d\n",sum1);
if (sum1<optimum)

optimum=sum1;

 }
}

else

// recursively explore the permutations starting at index i going through index n-1*/
 for (j=i; j<n; j++) { /* try the array with i and j switched */

 swap (v, i, j);

brute_force (v, n, i+1);

 /* swap them back the way they were */
 swap (v, i, j);

 }

}

voidnearest_neighbour(intver) {

intmin,p,i,j,vis[20],from;
for(i=1;i<=ver;i++)

vis[i]=0;

vis[s]=1;

from=s;
sum=0;

for(j=1;j<ver;j++) {

min=999;
 for(i=1;i<=ver;i++)

 if(vis[i] !=1 &&c[from][i]<min && c[from][i] !=0) {

min= c[from][i];

p=i;
 }

vis[p]=1;

from=p;
sum=sum+min;

 }

sum=sum+c[from][s];
}

void main () {

 intver,v[100],i,j;

printf("Enter n : ");
scanf("%d",&ver);

for (i=0; i<ver; i++)

v[i] = i+1;
printf("Enter cost matrix\n");

for(i=1;i<=ver;i++)

for(j=1;j<=ver;j++)
scanf("%d",&c[i][j]);

printf("\nEnter source : ");

scanf("%d",&s);

www.manaraa.com

47 | P a g e

brute_force (v, ver, 0);
printf("\nOptimum solution with brute force technique is=%f\n",optimum);

nearest_neighbour(ver);

printf("\nSolution with nearest neighbour technique is=%f\n",sum);

printf("The approximation val is=%f",((sum/optimum)-1)*100);
printf(" % ");

}

10.6 INPUT/ OUTPUT

10.7 LAB VIVA QUESTIONS:

1. Define Optimal Solution.

2. Explain Travelling Sales Person Problem.

3. What is the time complexity of Travelling Sales Person Problem?

www.manaraa.com

48 | P a g e

WEEK-11

MINIMUM COST SPANNING TREE

11.1 OBJECTIVE:

Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm.

11.2 RESOURCES:

 Dev C++

11.3 PROGRAM LOGIC:

1) Create a set Sthat keeps track of vertices already included in MST.
2) Assign a key value to all vertices in the input graph. Initialize all key values as INFINITE.

Assign key value as 0 for the first vertex so that it is picked first.

3) While S doesn’t include all vertices.

a) Pick a vertex u which is not there in Sand has minimum key value.

b) Include u to S.

c) Update key value of all adjacent vertices of u.

To update the key values, iterate through all adjacent vertices. For every adjacent vertex v, if

weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v

The idea of using key values is to pick the minimum weight edge from cut. The key values are used

only for vertices which are not yet included in MST, the key value for these vertices indicate the

minimum weight edges connecting them to the set of vertices included in MST.

11.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

11.5 SOURCE CODE.

www.manaraa.com

49 | P a g e

#include<stdio.h>
inta,b,u,v,n,i,j,ne=1;
int visited[10]={0},min,mincost=0,cost[10][10];

void main()
{

printf("\n Enter the number of

nodes:"); scanf("%d",&n);
printf("\n Enter the adjacency matrix:\n");
for(i=1;i<=n;i++)

for(j=1;j<=n;j++){
scanf("%d",&cost[i][j]);
if(cost[i][j]==0)

cost[i][j]=999;

}

visited[1]=1;
printf("\n");
while(ne<n)

{
for(i=1,min=999;i<=n;i++)

for(j=1;j<=n;j++)
if(cost[i][j]<min)

if(visited[i]!=0)

{

min=cost[i][j];
a=u=i;
b=v=j;

}

if(visited[u]==0 || visited[v]==0)
{

printf("\n Edge %d:(%d %d)

cost:%d",ne++,a,b,min); mincost+=min;
visited[b]=1;

}

cost[a][b]=cost[b][a]=999;

}
printf("\n Minimun cost=%d",mincost);

}

www.manaraa.com

50 | P a g e

11.6 INPUT/ OUTPUT

11.7 LAB VIVA QUESTIONS:

1. What is Minimum Cost spanning Tree.

2. Explain Prim’s ALGORITHM.

3. What is time complexity of Prim’s algorithm.

www.manaraa.com

51 | P a g e

WEEK-12

ALL PAIRS SHORTEST PATHS

12.1 OBJECTIVE:

Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.

12.2 RESOURCES:

 Dev C++

12.3 PROGRAM LOGIC:

Initialize the solution matrix same as the input graph matrix as a first step. Then we update the

solution matrix by considering all vertices as an intermediate vertex. The ideas is to one by one pick

all vertices and update all shortest paths which include the picked vertex as an intermediate vertex in

the shortest path.
When we pick vertex number k as an intermediate vertex, we already have considered vertices

{0, 1, 2, .. k-1} as intermediate vertices.

For every pair (i, j) of source and destination vertices respectively, there are two possible cases.

1)k is not an intermediate vertex in shortest path from i to j. We keep the value of dist[i][j] as it is.

2)k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] as

dist[i][k] + dist[k][j].

12.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.

2. Compile: Alt + F9

3. Execute: Ctrl + F10

www.manaraa.com

52 | P a g e

12.5 SOURCE CODE.

#include<stdio.h>
int min(int,int);

voidfloyds(int p[10][10],int n){

 inti,j,k;
 for(k=1;k<=n;k++)

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j++)

 if(i==j)
 p[i][j]=0;

 else

 p[i][j]=min(p[i][j],p[i][k]+p[k][j]);
}

int min(inta,int b){

 if(a<b)

 return(a);
 else

 return(b);

}
main(){

 int p[10][10],w,n,e,u,v,i,j;

 printf("\n Enter the number of vertices:");
scanf("%d",&n);

 printf("\n Enter the number of edges:\n");

scanf("%d",&e);

 for(i=1;i<=n;i++){
 for(j=1;j<=n;j++)

 p[i][j]=999;

 }
 for(i=1;i<=e;i++){

 printf("\n Enter the end vertices of edge%d with its weight \n",i);

 scanf("%d%d%d",&u,&v,&w);
 p[u][v]=w;

 }

 printf("\n Matrix of input data:\n");

 for(i=1;i<=n;i++) {
 for(j=1;j<=n;j++)

 printf("%d \t",p[i][j]);

 printf("\n");
 }

 floyds(p,n);

 printf("\n Transitive closure:\n");

 for(i=1;i<=n;i++){
 for(j=1;j<=n;j++)

 printf("%d \t",p[i][j]);

 printf("\n");
 }

 printf("\n The shortest paths are:\n");

 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++){

www.manaraa.com

53 | P a g e

 if(i!=j)
 printf("\n <%d,%d>=%d",i,j,p[i][j]);

 }

}

12.6 INPUT/ OUTPUT

www.manaraa.com

54 | P a g e

12.7 LAB VIVA QUESTIONS:

1. What is Floyd’s algorithm?

2. What is the time complexity of Floyd’s algorithm?

3. Define Distance Matrix.

www.manaraa.com

55 | P a g e

WEEK-13

N QUEENS PROBLEM

13.1 OBJECTIVE:

Implement N Queen's problem using Back Tracking.

13.2 RESOURCES:

 Dev C++

13.3 PROGRAM LOGIC:

1) Start in the leftmost column

2) If all queens are placedreturn true

3) Try all rows in the current column. Do following for every tried row.
 a) If the queen can be placed safely in this row then mark this [row, column] as part of the

solution and recursively check if placing queen here leads to a solution.

 b) If placing queen in [row, column] leads to a solution then return true.
 c) If placing queen doesn't lead to a solution then unmark this [row, column] (Backtrack) and go

to step (a) to try other rows.

3) If all rows have been tried and nothing worked, return false to trigger Backtracking.

13.4 PROCEDURE:

1. Create: Open Dev C++, write a program after that save the program with .c extension.
2. Compile: Alt + F9

3. Execute: Ctrl + F10

13.5 SOURCE CODE:

#include<stdio.h>

#include<math.h>
int a[30],count=0;

int place(intpos){

 int i;
 for(i=1;i<pos;i++){

 if((a[i]==a[pos])||((abs(a[i]-a[pos])==abs(i-pos))))

 return 0;

 }
 return 1;

}

voidprint_sol(int n){
 inti,j; count++;

 printf("\n\nSolution #%d:\n",count);

 for(i=1;i<=n;i++){
 for(j=1;j<=n;j++){

 if(a[i]==j)

www.manaraa.com

56 | P a g e

 printf("Q\t");
 else

 printf("*\t");

 }

 printf("\n");
 }

}

void queen(int n){
int k=1;

a[k]=0;

while(k!=0){
 a[k]=a[k]+1;

 while((a[k]<=n)&&!place(k))

 a[k]++;

 if(a[k]<=n){
 if(k==n)

 print_sol(n);

 else{
 k++;

 a[k]=0;

 }
 }

 else

 k--;

}
}

void main(){

 inti,n;
 printf("Enter the number of Queens\n");

 scanf("%d",&n);

 queen(n);

 printf("\nTotal solutions=%d",count);
}

www.manaraa.com

57 | P a g e

13.6 INPUT/ OUTPUT

13.7 LAB VIVA QUESTIONS:

1. Define backtracking.
2. Define live node, dead node.

3. Define implicit and explicit constraints.

4. What is the time complexity of n-queens problem.

